
CHE-330 Module 6 
Correction 

 
 
Exercice 6.1 
 
La sphère de sciure est soumise à son poids, à la poussée d’Archimède, et à la 
force de traînée : 
 

𝜌 ∗
4

3
𝜋𝑟3𝑔 − 𝜌𝑎𝑖𝑟 ∗

4

3
𝜋𝑟3𝑔 − 𝐶𝑇

𝜋𝑟2

2
𝜌𝑎𝑖𝑟𝑣𝑙𝑖𝑚

2 = 0   

 
Il faut faire une supposition sur le régime de l’écoulement. Considérant que la 
particule a un diamètre très faible, on peut supposer que Re < 6000 et donc : 
 

𝐶𝑇 = (√
24

𝑅𝑒
+ 0.5407)

2

= (√
24 ∗ 𝜇

𝜌𝑎𝑖𝑟𝑣lim ∗ 2𝑟
+ 0.5407)

2

 

 
On obtient : 
 

(𝜌 − 𝜌𝑎𝑖𝑟) ∗
4

3
𝜋𝑟3𝑔 −

𝜋𝑟2

2
∗ (√

24 ∗ 𝜇

𝜌𝑎𝑖𝑟𝑣lim ∗ 2𝑟
+ 0.5407)

2

𝜌𝑎𝑖𝑟𝑣𝑙𝑖𝑚
2 = 0 

 
Application numérique : 
 

(630 − 1.2) ∗
4

3
𝜋(10−5)3 ∗ 9.81 −

𝜋(10−5)2

2

∗ (√
24 ∗ 1.82 ∗ 10−5

1.2 ∗ 𝑣lim ∗ 2 ∗ 10−5
+ 0.5407)

2

1.2 ∗ 𝑣𝑙𝑖𝑚
2 = 0 

 

2.584 ∗ 10−11 − 1.571 ∗ 10−10 ∗ (√
18.2

𝑣lim
+ 0.5407)

2

∗ 1.2 ∗ 𝑣𝑙𝑖𝑚
2 = 0 

 
On trouve, par résolution graphique, que : 
 

𝒗𝒍𝒊𝒎 = 𝟕. 𝟒 ∗ 𝟏𝟎−𝟑 𝒎. 𝒔−𝟏 
 
 
 
 
 
On vérifie le nombre de Reynolds : 



 

𝑅𝑒 =
𝜌𝑣𝑙𝑖𝑚𝐷

𝜇
=

1.2 ∗ 7.4 ∗ 10−3 ∗ 2 ∗ 10−5

1.82 ∗ 10−5
= 9.76 ∗ 10−3 

 
On est donc en présence d’un écoulement laminaire, qui suit la loi de Stokes (Re < 
0.1). On aurait pu utiliser directement l’expression simplifiée : 
 

𝐶𝑇 =
24

𝑅𝑒
 

 
qui conduit à l’expression : 
 

𝑣𝑙𝑖𝑚 =
2

9
 (𝜌 − 𝜌𝑎𝑖𝑟)

𝑟2𝑔

𝜇
 

 
On obtient alors : 

𝒗𝒍𝒊𝒎 = 𝟕. 𝟓𝟑 ∗ 𝟏𝟎−𝟑 𝒎. 𝒔−𝟏 
 
 
Exercice 6.2 
 
Le nombre de Reynolds associé à l’écoulement est : 
 

𝑅𝑒 =
𝜌𝑎𝑖𝑟𝑣𝐷

𝜇𝑎𝑖𝑟
=

1.29 ∗ 27.8 ∗ 2.3

1.72 ∗ 10−5
= 4.8 ∗ 106 

 
Pour cette valeur, on lit sur le graph que 𝐶𝑇 ≈ 0.8. 
 
Par conséquent, 
 

𝐹 = 𝐶𝑇 ∗
𝐷𝐻

2
𝜌𝑎𝑖𝑟𝑣∞

2  

 
Application numérique : 
 

𝐹 = 0.8 ∗
2.3 ∗ 20

2
∗ 1.29 ∗ 27.82 = 𝟏𝟖. 𝟑 𝒌𝑵 

 
Le torque à une distance z, sur un élément infinitésimal de hauteur dz, est donné 
par : 

𝑑𝜏 = 𝑑𝐹. 𝑧 = 𝐶𝑇 ∗
𝐷 ∗ 𝑑𝑧

2
𝜌𝑎𝑖𝑟𝑣∞

2 . 𝑧 

 
Donc le torque total qui s’applique à la base de la colonne est obtenu par 
intégration sur toute la hauteur : 
 

𝜏 = ∫ 𝑑𝜏
ℎ𝑎𝑢𝑡𝑒𝑢𝑟

= ∫ 𝐶𝑇 ∗
𝐷 ∗ 𝑑𝑧

2
𝜌𝑎𝑖𝑟𝑣∞

2 . 𝑧
𝐻

0

= 𝐶𝑇 ∗
𝐷

2
𝜌𝑎𝑖𝑟𝑣∞

2 ∫ 𝑧 𝑑𝑧
𝐻

0

 



 

𝜏 = 𝐶𝑇 ∗
𝐷

2
𝜌𝑎𝑖𝑟𝑣∞

2 ∗
𝐻2

2
 

 
𝝉 = 𝟏𝟖𝟑 𝒌𝑵. 𝒎 

 
Exercice 6.3 
 
La force de traînée vaut : 
 

𝐹 = 𝐶𝑇

𝐴

2
𝜌𝑎𝑖𝑟𝑣2 

 

𝐹 = 0.24 ∗
2 ∗ 1.5

2
∗ 1.2 ∗ (

100

3.6
)

2

= 𝟑𝟑𝟑. 𝟑 𝑵 

La puissance associée à cette force vaut : 
 

𝑃 = 𝐹. 𝑣 
 

𝑃 = 333.3 ∗
100

3.6
= 𝟗𝟐𝟓𝟗 𝑾 

 
On en déduit que la durée de fonctionnement de la batterie sera de : 
 

𝑡 =
85 ∗ 103[𝑊ℎ]

9259[𝑊]
= 9.18 ℎ 

 
Ce qui correspond à une distance de : 
 

𝑑 = 𝑣 ∗ 𝑡 = 9.18 ∗ 100 = 𝟗𝟏𝟖 𝒌𝒎 
 
 
On obtient, bien entendu, une valeur supérieure à celle spécifiée par le fabricant, 
puisque la force de traînée n’est pas la seule source de perte d’énergie lorsque le 
véhicule est en mouvement (frottement sur la route, masse du véhicule…). 
Cependant, on note que la force de traînée joue une part non négligeable dans ces 
pertes d’énergie. 
 
 
Exercice 6.4: 
 
La plaque est très fine (épaisseur d = 1mm). On s’attend donc à ce que la 
température y soit uniforme. Pour prouver cette hypothèse, on veut une 
estimation du nombre de Biot. 
 

𝐵𝑖 =
ℎ𝑑

𝑘
 

 



Typiquement pour la convection naturelle d’un gaz, le coefficient de transfert de 
chaleur est compris entre 5 et 37 W.m-2.K-1 (cf Transport phenomena I module 
9). On peut donc prendre 37 W.m-2.K-1 comme valeur maximale pour h. 
 
Par conséquent la valeur maximale de Bi sera : 
 

𝐵𝑖 =
37 ∗ 10−3

40
= 9.25 ∗ 10−4 ≪ 0.1 

 
Ainsi le nombre de Biot est très faible et la température est uniforme dans toute 
la plaque. On peut donc considérer que les deux faces sont à la même 
température Ts.  
 
 
Le flux de chaleur provenant de la face supérieure de la plaque est donné par : 
 

𝑄𝑢𝑝 = ℎ𝑢𝑝𝐴(𝑇𝑠 − 𝑇∞,𝑢𝑝) 

 
Et le flux de chaleur reçu par la face inférieure est donné par : 
 

𝑄𝑑𝑜𝑤𝑛 = ℎ𝑑𝑜𝑤𝑛𝐴(𝑇𝑠 − 𝑇∞,𝑑𝑜𝑤𝑛) 
 
Pour déterminer la valeur de ces flux, il nous faut déterminer la température Ts 
de la plaque et la valeur des coefficients de transfert de chaleur (qui découle 
aussi de Ts).  
 
Pour déterminer cette température, on utilise l’égalité des flux en régime 
stationnaire : 
 

𝑄 = |𝑄𝑢𝑝| = |𝑄𝑑𝑜𝑤𝑛| 

 
|ℎ𝑢𝑝(𝑇𝑠 − 𝑇∞,𝑢𝑝)| = |ℎ𝑑𝑜𝑤𝑛(𝑇𝑠 − 𝑇∞,𝑑𝑜𝑤𝑛)| 

 
Il faut maintenant exprimer les coefficients h en fonction des propriétés du 
fluide. 
 

ℎ𝑖 =
𝑘𝑎𝑖𝑟 𝑁𝑢𝑖

𝐿
 (𝑖 = 𝑢𝑝 or 𝑑𝑜𝑤𝑛)  

 
Et le nombre de Nusselt pour une plaque orientée de cette manière est donné par 
(cf cours) : 
 

𝑁𝑢𝑖 = 0.15 𝑅𝑎𝐿,𝑖
1/3

 (𝑠𝑖 107 < 𝑅𝑎𝐿,𝑖 < 1011, à vérifier) 

Avec  
𝑅𝑎𝐿,𝑖 = 𝐺𝑟𝐿,𝑖𝑃𝑟i 

 
Et  



𝐺𝑟𝐿,𝑖 =
𝑔𝛽𝑖𝐿

3𝜌𝑖
2

𝜇𝑖
2 |𝑇𝑠 − 𝑇∞,𝑖| 

 

𝑃𝑟i =
𝜇𝑖𝑐𝑖

𝑘𝑎𝑖𝑟
 

 
Il faut donc estimer les différents paramètres à la température de film, qui est 
différente selon que l’on considère la surface supérieure ou la surface inférieure 
de la plaque. De plus il faut faire une approximation sur la température Ts que l’on 
s’attend à trouver. Etant donné la géométrie des échanges de chaleur, on peut 
penser que la température de la plaque sera proche de la température moyenne 
entre 𝑇∞,𝑑𝑜𝑤𝑛 et 𝑇∞,𝑢𝑝. On suppose donc que : 𝑇𝑠 ≈ 5°𝐶 

 

• Pour la surface supérieure : 𝑇𝑓,𝑢𝑝 =
1

2
∗ (𝑇∞,𝑢𝑝 + 𝑇𝑠) = −2.5°𝐶 

 
A cette température : 

𝛽𝑢𝑝 = 0.003695 𝐾−1 

𝜌𝑢𝑝 = 1.32 𝑘𝑔. 𝑚−3 

𝜇𝑢𝑝 = 1.87 ∗ 10−5 𝑁. 𝑠. 𝑚−2 

𝑐𝑢𝑝 = 1000 𝐽. 𝑘𝑔−1. 𝐾−1 

 
 En remplaçant dans les expressions littérales on obtient : 
 

𝐺𝑟𝐿,𝑢𝑝 = 4.25 ∗ 108 |𝑇𝑠 − 263| 

 
𝑃𝑟𝑢𝑝 = 0.748 

  
 Donc 

𝑅𝑎𝐿,𝑢𝑝 = 3.18 ∗ 108 ∗ |𝑇𝑠 − 263| 

 
 Note : l’expression utilisée pour le calcul de Nu est donc valide 
 

𝑁𝑢𝑢𝑝 = 102.4 ∗ |𝑇𝑠 − 263|
1
3 

 

𝒉𝒖𝒑 =
𝒌𝒂𝒊𝒓 𝑵𝒖𝒖𝒑

𝑳
= 𝟏. 𝟗𝟐𝟓|𝑻𝒔 − 𝟐𝟔𝟑|

𝟏
𝟑 

• Pour la surface inférieure : 𝑇𝑓,𝑑𝑜𝑤𝑛 =
1

2
∗ (𝑇∞,𝑑𝑜𝑤𝑛 + 𝑇𝑠) = 12.5°𝐶 

 
A cette température : 

𝛽𝑑𝑜𝑤𝑛 = 0.003501 𝐾−1 
𝜌𝑑𝑜𝑤𝑛 = 1.25 𝑘𝑔. 𝑚−3 
𝜇𝑑𝑜𝑤𝑛 = 1.87 ∗ 10−5 𝑁. 𝑠. 𝑚−2 
𝑐𝑑𝑜𝑤𝑛 = 1000 𝐽. 𝑘𝑔−1. 𝐾−1 

 
 En remplaçant dans les expressions littérales on obtient : 
 



𝐺𝑟𝐿,𝑑𝑜𝑤𝑛 = 3.61 ∗ 108 |𝑇𝑠 − 293| 
 

𝑃𝑟𝑑𝑜𝑤𝑛 = 0.748 
  
 Donc 

𝑅𝑎𝐿,𝑑𝑜𝑤𝑛 = 2.70 ∗ 108 ∗ |𝑇𝑠 − 293| 
 
 Note : l’expression utilisée pour le calcul de Nu est donc valide 
 

𝑁𝑢𝑑𝑜𝑤𝑛 = 96.95 ∗ |𝑇𝑠 − 293|
1
3 

 

𝒉𝒅𝒐𝒘𝒏 =
𝒌𝒂𝒊𝒓 𝑵𝒖𝒅𝒐𝒘𝒏

𝑳
= 𝟏. 𝟖𝟐𝟐 ∗ |𝑻𝒔 − 𝟐𝟗𝟑|

𝟏
𝟑 

 
Pour déterminer la valeur exacte de 𝑇𝑠, on revient à l’égalité : 
 

|𝑄𝑢𝑝| = |𝑄𝑑𝑜𝑤𝑛| 

 
|ℎ𝑢𝑝(𝑇𝑠 − 𝑇∞,𝑢𝑝)| = |ℎ𝑑𝑜𝑤𝑛(𝑇𝑠 − 𝑇∞,𝑑𝑜𝑤𝑛)| 

 

1.925 ∗ |𝑇𝑠 − 263|
4
3 =  1.822 ∗ |𝑇𝑠 − 293|

4
3 

 
Cette équation donne comme valeur : 
 

𝑻𝒔 = 𝟐𝟕𝟕. 𝟕 𝑲   

 
Note : prendre 𝑇𝑠 ≈ 298𝐾 pour estimer les propriétés de l’air était donc justifié 
 
On peut maintenant calculer le flux de chaleur : 
 

𝑄 = ℎ𝑢𝑝𝐴(𝑇𝑠 − 𝑇∞,𝑢𝑝) 

 

𝑄 =  1.925 ∗ (277.7 − 263)
4
3 ∗ 1.33 ∗ 0.75 

 

𝑸 = 𝟔𝟗. 𝟏𝟓 𝑾  

  



 
Exercice 6.5: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On utilise des valeurs moyennes pour les propriétés de l’air : 
 

ℎ𝑒𝑥𝑡 = ℎ𝑖𝑛𝑡 = 10 𝑊. 𝑚−2. 𝐾−1 
 

𝑘𝑎𝑖𝑟 = 0.024 𝑊. 𝑚−1𝐾−1 
 
L’expression du flux de chaleur à travers la vitre est : 
 

𝑞 =
𝑇𝑖𝑛𝑡 − 𝑇𝑒𝑥𝑡

1
ℎ𝑖𝑛𝑡

+
2𝐿𝑣𝑒𝑟𝑟𝑒

𝑘𝑣𝑒𝑟𝑟𝑒
+

𝐿𝑎𝑖𝑟

𝑘𝑎𝑖𝑟
+

1
ℎ𝑒𝑥𝑡

 

 
Remarque : on considère ici que le transfert de chaleur à travers l’air se fait 
exclusivement par conduction, car la longueur de la vitre étant très grande devant 
sa largeur, le transfert de chaleur par convection est négligeable. 
 

𝑞 =
40

0.1 + 2 ∗
0.003
0.96 +

0.006
0.024 + 0.1

 

 
𝒒 = 𝟖𝟕. 𝟕 𝑾. 𝒎−𝟐 

 
La vitesse de l’écoulement est donnée par (cf. cours) : 
 

𝑣𝑧 =
(𝜌̅𝑔𝛽̅Δ𝑇)𝐵2

12𝜇
((

𝑦

𝐵
)

3

−
𝑦

𝐵
) 

 
Pour obtenir la vitesse maximale, on peut regarder où la dérivée de 𝑣𝑧  s’annule : 

Tint = 20°C Text = -20°C 

0 B 
x 

TA,B TB,C TA TC 



 

𝑑𝑣𝑧

𝑑𝑦
=

(𝜌̅𝑔𝛽̅Δ𝑇)𝐵2

12𝜇
(

3𝑦2

𝐵3
−

1

𝐵
) 

 
𝑑𝑣𝑧

𝑑𝑦
= 0 ⇔ 𝑦𝑚𝑎𝑥 = ±

𝐵

√3
 

 
donc  

𝑣𝑚𝑎𝑥 = |
(𝜌̅𝑔𝛽̅Δ𝑇)𝐵2

12𝜇
(

1

3√3
−

1

√3
)| = |

(𝜌̅𝑔𝛽̅Δ𝑇)𝐵2

18√3𝜇
| 

 
 
Pour l’air on prendra : 
 

𝜌̅ = 1.29 𝑘𝑔. 𝑚−3 
𝛽̅ = 3.6 ∗ 10−3 𝐾−1 

𝜇 = 1.7 ∗ 10−5𝑘𝑔. 𝑚−1. 𝑠−1 
 
Reste à évaluer ∆T : 
 

𝑇𝐴,𝐵 = 𝑇𝑖𝑛𝑡 − 𝑞 ∗ (
1

ℎ𝑖𝑛𝑡
+

𝐿𝑣𝑒𝑟𝑟𝑒

𝑘𝑣𝑒𝑟𝑟𝑒
) 

 

𝑇𝐴,𝐵 = 20 − 87.7 ∗ (0.1 +
0.003

0.96
) = 𝟏𝟎. 𝟗°𝑪 

 
De même : 

𝑇𝐵,𝐶 = 𝑇𝑒𝑥𝑡 + 𝑞 ∗ (
1

ℎ𝑒𝑥𝑡
+

𝐿𝑣𝑒𝑟𝑟𝑒

𝑘𝑣𝑒𝑟𝑟𝑒
) 

 

𝑇𝐵,𝐶 = −20 + 87.7 ∗ (0.1 +
0.003

0.96
) = −𝟏𝟎. 𝟗°𝑪 

 
Par conséquent  
 

∆𝑇 = 𝑇𝐴,𝐵 − 𝑇𝐵,𝐶 = 𝟐𝟏. 𝟖 °𝑪 
 
Enfin : 

𝑣𝑚𝑎𝑥 = |
1.29 ∗ 9.81 ∗ 0.0036 ∗ 21.8 ∗ 0.0032

18√3 ∗ 1.7 ∗ 10−5
| = 𝟎. 𝟎𝟏𝟕 𝒎. 𝒔−𝟏 

 
L’air se déplace donc de 1.7 cm.s-1 à l’intérieur de la vitre. 
  



 
Exercice 6.6: 
 
Step 1 : For determining the terminal velocity we guess : 500 < Re < 105, then 
𝑐𝑑 ≈ 0.44 
 
At the terminal velocity : 

𝐹𝑑 = 𝐹𝑔 

𝑐𝑑̅̅ ̅𝜋𝑅2
1

2
𝜌𝑎𝑖𝑟𝑣∞

2 =
4

3
𝜋𝑅3(𝜌𝑁 − 𝜌𝑎𝑖𝑟)𝑔 

 

𝑣∞ = √
8(𝜌𝑁−𝜌𝑎𝑖𝑟)𝑅𝑔

3𝑐𝑑̅̅̅̅ 𝜌𝑎𝑖𝑟
 =√

8(977−1.2)0.001∗9.81

3∗0.44∗1.2
= 6.95 m/s 

 
Check :  

𝑅𝑒𝐷 =  
𝜌𝑣∞𝐷

𝜇
=  

1.2∗6.95∗0.002

1.82 𝑥 10−5 = 916.5 

Hence, our guess was valid and we can assume a 𝑐𝑑 ≈ 0.44. 
 
Step 2 : Estimate 𝑆ℎ̅̅ ̅ at these conditions (3.5< Re < 76000 and 0.7 < Sc < 380) 

𝑆𝑐 =  
𝑣

𝐷
=

1.511 ∗ 10−5

0.8 ∗ 10−5
= 1.89 

 

𝑆ℎ̅̅ ̅ = 2 + (0.4 𝑅𝑒𝐷

1

2 + 0.06𝑅𝑒𝐷

2

3 ) ∗ 𝑆𝑐0.4 ∗ 11/4=24.9 

 

𝑆ℎ̅̅ ̅ =
𝑘𝑐,𝑔𝑑

𝐷
 and thus 𝑘𝑐,𝑔 = 0.100

𝑚

𝑠
 with the diameter d=2R 

 

𝑁𝑁 = 𝑘𝑐,𝑔 ∗ 𝐴 ∗ (𝑐𝑁 − 𝑐∞) = 𝑘𝑐,𝑔 ∗ 4𝜋𝑅2 ∗ (𝑐𝑁,𝑠 − 0) 

 
We can calculate the surface concentration of naphtalene from 𝑝𝑉 = 𝑛𝑅𝑇 : 

𝑛

𝑉
=

𝑝

𝑅𝑇
= 0.698 𝑚𝑚𝑜𝑙/𝑚3 

 
For the sublimation rate we then get :  

𝑁𝑁 = 0.100 𝑚/𝑠 ∗ 4𝜋 ∗ 0.0012𝑚2 ∗ 0.698
𝑚𝑚𝑜𝑙

𝑚3
= 8.74 ∗ 10−7𝑚𝑜𝑙/𝑠 

 
b) Over time the radios of the sphere will decrease. Hence, Re, Sh, 𝑘𝑐,𝑔  and A will 

decrease. Therefore, the rate will decrease as well. 
 
Exercice 6.7: 
 
L’analogie de Chilton-Colburn permet d’estimer Nu à partir de ff. 
 

𝑓𝐹

2
=

𝑁𝑢

𝑅𝑒 𝑃𝑟
1
3

  

 



Le nombre de Reynolds vaut : 

𝑅𝑒 =
𝜌𝑣𝐷

𝜇
 

 

𝑣 =
𝑚̇

𝜌𝜋𝑅2
=

1000

3600 ∗ 861 ∗ 𝜋 ∗ 0.0182
= 0.317 𝑚. 𝑠−1 

 

𝑅𝑒 =
861 ∗ 0.317 ∗ 0.036

0.46 ∗ 10−3
= 21360 

 
Et le nombre de Prandtl vaut : 
 

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
=

0.46 ∗ 10−3 ∗ 1881

0.14
= 6.18 

 
Donc 

𝑁𝑢 =
𝑓𝐹

2
∗  𝑅𝑒 𝑃𝑟

1
3 

 

𝑁𝑢 =
0.0115

2
∗ 21360 ∗ 6.18

1
3 = 225.4 

 
Le coefficient de transfert de chaleur vaut donc : 
 

ℎ =
𝑁𝑢 𝑘

𝐷
= 225.4 ∗

0.14

0.036
= 876.6 𝑊. 𝐾−1. 𝑚−2 

 
Et on a : 
 

𝑞 = 𝑚̇𝑐𝑝∆𝑇 = ℎ𝐴(𝑇𝑏𝑒𝑛𝑧𝑒𝑛𝑒 − 𝑇𝑤𝑎𝑡𝑒𝑟) 

Donc 

𝐴 = 2𝜋𝑅𝐿 =
𝑚̇𝑐𝑝∆𝑇

ℎ(𝑇𝑏𝑒𝑛𝑧𝑒𝑛𝑒 − 𝑇𝑤𝑎𝑡𝑒𝑟)
 

 
La température moyenne de benzène est 60 °C. On suppose que la data pour 50 
°C est suffisante exact. 
 

𝐴 ≈
1000 ∗ 1881 ∗ 40

3600 ∗ 876.6 ∗ (60 − 20)
= 𝟎. 𝟓𝟑 𝒎𝟐  

 
Il faudra une conduite d’environ 80 cm pour refroidir le benzène 
 

𝐿 =
𝐴

2𝜋𝑅
= 𝟒. 𝟕 𝒎  

 
 
 
 


